168 research outputs found

    Detection of amplified DNA sequences by reverse chromosome painting using genomic tumor DNA as probe

    Get PDF
    A modification of reverse chromosome painting was carried out using genomic DNA from tumor cells as a complex probe for chromosomal in situ suppression hybridization to normal metaphase chromsome spreads. Amplified DNA sequences contained in such probes showed specific signals, revealing the normal chromosome positions from which these sequences were derived. As a model system, genomic DNAs were analyzed from three tumor cell lines with amplification units including the proto-oncogene c-myc. The smallest amplification unit was about 90 kb and was present in 16–24 copies; the largest unit was bigger than 600 kb and was present in 16–32 copies. Specific signals that co-localized with a differently labeled c-myc probe on chromosome band 8q24 were obtained with genomic DNA from each cell line. In further experiments, genomic DNA derived from primary tumor material was used in the case of a male patient with glioblastoma multiforme (GBM). Southern blot analysis using an epidermal growth factor receptor gene (EGFR) probe that maps to 7p13 indicated the amplification of sequences from this gene. Using reverse chromosome painting, signals were found both on band 7p13 and bands 12q13–q15. Notably, the signal on 12q13–q15 was consistently stronger. The weaker 7p13 signal showed co-localization with the major signal of the differently labeled EGFR probe. A minor signal of this probe was seen on 12q13, suggesting cross-hybridization to ERB3 sequences homologous to EGFR. The results indicate co-amplification of sequences from bands 12q13–q15, in addition to sequences from band 7p13. Several oncogenes map to 12q13–q15 providing candidate genes for a tumor-associated proto-oncogene amplification. Although the nature of the amplified sequences needs to be clarified, this experiment demonstrates the potential of reverse chromosome painting with genomic tumor DNA for rapidly mapping the normal chromosomal localization of the DNA from which the amplified sequences were derived. In addition, a weaker staining of chromosomes 10 and X was consistently observed indicating that these chromosomes were present in only one copy in the GBM genome. This rapid approach can be used to analyze cases where no metaphase spreads from the tumor material are available. It does not require any preknowledge of amplified sequences and can be applied to screen large numbers of tumors

    FISH of Alu-PCR amplified YAC clones and applications in tumor cytogenetics

    Get PDF

    Mapping of Multiple DNA Gains and Losses in Primary Small Cell Lung Carcinomas by Comparative Genomic Hybridization

    Get PDF
    Comparative genomic hybridization was applied for a comprehensive screening of under- and overrepresentation of genetic material in 13 autoptic small cell lung cancer specimens. The most abundant genetic changes include DNA losses of chromosome arms 3p, 5q, 10q, 13q, and 17p and DNA gains of 3q, 5p, 8q, and 17q. Amplification sites in these tumors were mapped to 22 chromosome bands. The most frequently involved band was 19q13.1 (4 cases). Bands 1p32, 2p23, 7q11.2, 8q24, and 13q33–34 were involved in two cases each

    Chromosomal Gains and Losses in Uveal Melanomas Detected by Comparative Genomic Hybridization

    Get PDF
    Eleven uveal melanomas were analyzed using comparative genomic hybridization (CGH). The most abundant genetic changes were loss of chromosome 3, overrepresentation of 6p, loss of 6q, and multiplication of 8q. The smallest overrepresented regions on 6p and 8q were 6pterp21 and 8q24qter, respectively. Several additional gains and losses of chromosome segments were repeatedly observed, the most frequent one being loss of 9p (three cases). Monosomy 3 appeared to be a marker for ciliary body involvement. CGH data were compared with the results of chromosome banding. Some alterations, e.g., gains of 6p and losses of 6q, were observed with higher frequencies after CGH, while others, e.g., 9p deletions, were detected only by CGH. The data suggest some similarities of cytogenetic alterations between cutaneous and uveal melanoma. In particular, the 9p deletions are of interest due to recent reports about the location of a putative tumor-suppressor gene for cutaneous malignant melanoma in this region

    Rapid identification of homologous recombinants and determination of gene copy number with reference/query pyrosequencing (RQPS)

    Get PDF
    Manipulating the mouse genome is a widespread technology with important applications in many biological fields ranging from cancer research to developmental biology. Likewise, correlations between copy number variations (CNVs) and human diseases are emerging. We have developed the reference-query pyrosequencing (RQPS) method, which is based on quantitative pyrosequencing and uniquely designed probes containing single nucleotide variations (SNVs), to offer a simple and affordable genotyping solution capable of identifying homologous recombinants independent of the homology arm size, determining the micro-amplification status of endogenous human loci, and quantifying virus/transgene copy number in experimental or commercial species. In addition, we also present a simple pyrosequencing-based protocol that could be used for the enrichment of homologous recombinant embryonic stem (ES) cells

    Molecular cytogenetic analysis of formalin-fixed, paraffin-embedded solid tumors by comparative genomic hybridization after universal DNA-amplification

    Get PDF
    We present a technique which allows the detection and chromosomal localization of DNA sequence copy number changes in solid tumor genomes from frozen sections and paraffin embedded, formalin fixed specimens. Based on comparative genomic hybridization and on universal DNA amplification procedures this technique is possible even if only a few tumor cells are available. We demonstrate the feasibility of this method to visualize complete and partial chromosome gains and losses and gene amplifications In archived solid tumor samples

    Metaphase and Interphase Cytogenetics with Alu-PCR-amplified Yeast Artificial Chromosome Clones Containing the BCR Gene and the Protooncogenes c-raf-1, c-fms, and c-erbB-21

    Get PDF
    A human yeast artificial chromosome (YAC) library was screened by polymerase chain reaction with oligonucleotide primers defined for DNA sequences of the BCR gene and the protooncogenes c-raf-1, c-fms, and c-erB-2. Alu-PCR-generated human DNA sequences were obtained from the respective YAC clones and used for fluorescence in situ hybridization experiments under suppression conditions. After chromosomal in situ suppression hybridization to GTG-banded human prometaphase chromosomes, seven of nine initially isolated YAC clones yielded strong signals exclusively in the chromosome bands containing the respective genes. Two clones yielded additional signals on other chromosomes and were excluded from further tests. The band-specific YACs were successfully applied to visualize specific structural chromosome aberrations in peripheral blood cells from patients with myelodysplasia exhibiting del(5)(q13q34), chronic myeloid leukemia and acute lymphocytic leukemia with t(9;22)(q34;q11), acute promyelocytic leukemia (M3) with t(15;17)(q22;q21), and in a cell line established from a proband with the constitutional translocation t(3;8)(p14.2;q24). In addition to the analysis of metaphase spreads, we demonstrate the particular usefulness of these YAC clones in combination with whole chromosome painting to analyze specific chromosome aberrations directly in the interphase nucleus

    Towards many colors in FISH on 3D-preserved interphase nuclei

    Get PDF
    The article reviews the existing methods of multicolor FISH on nuclear targets, first of all, interphase chromosomes. FISH proper and image acquisition are considered as two related components of a single process. We discuss (1) M-FISH (combinatorial labeling + deconvolution + widefield microscopy); (2) multicolor labeling + SIM (structured illumination microscopy); (3) the standard approach to multicolor FISH + CLSM (confocal laser scanning microscopy; one fluorochrome - one color channel); (4) combinatorial labeling + CLSM; (5) non-combinatorial labeling + CLSM + linear unmixing. Two related issues, deconvolution of images acquired with CLSM and correction of data for chromatic Z-shift, are also discussed. All methods are illustrated with practical examples. Finally, several rules of thumb helping to choose an optimal labeling + microscopy combination for the planned experiment are suggested. Copyright (c) 2006 S. Karger AG, Basel

    Securin Is Not Required for Chromosomal Stability in Human Cells

    Get PDF
    Abnormalities of chromosome number are frequently observed in cancers. The mechanisms regulating chromosome segregation in human cells are therefore of great interest. Recently it has been reported that human cells without an hSecurin gene lose chromosomes at a high frequency. Here we show that, after hSecurin knockout through homologous recombination, chromosome losses are only a short, transient effect. After a few passages hSecurin(−/−) cells became chromosomally stable and executed mitoses normally. This was unexpected, as the securin loss resulted in a persisting reduction of the sister-separating protease separase and inefficient cleavage of the cohesin subunit Scc1. Our data demonstrate that securin is dispensable for chromosomal stability in human cells. We propose that human cells possess efficient mechanisms to compensate for the loss of genes involved in chromosome segregation
    corecore